
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 6, November 2009

Characterization of the Space of Feasible Worst-Case
Execution Times for Earliest-Deadline-First Scheduling

Laurent George∗
University of Paris 12, 94400 Vitry sur Seine, France

and

Jean-François Hermant†

ECE, LACSC, Paris, France

DOI: 10.2514/1.44721

This paper presents a sensitivity analysis for the dimensioning of real-time systems in which
sporadic tasks are executed according to the preemptive earliest deadline first scheduling
policy. The timeliness constraints of the tasks are expressed in terms of late termination
deadlines. New results for earliest deadline first are shown, which enable us to determine the
space of feasible worst-case execution times, denoted the C-space, valid for any configuration
of worst-case execution times. The C-space is such that any task set with its worst-case
execution times in the C-space domain is feasible with earliest deadline first. We show in a
first approach that the C-space domain is convex, a property that can be used to reduce the
number of inequalities characterizing the C-space domain. We propose in another approach
to reduce the number of inequalities based on the concept of worst-case busy period for worst-
case execution times in the C-space. This approach can be used for busy periods meeting
a given property. We apply the two approaches on an example, and we compare the C-
space obtained with earliest deadline first scheduling to the C-space obtained with deadline
monotonic scheduling.

I. Introduction

THIS paper considers the problem of correctly dimensioning real-time systems. The correct dimensioning of
a real-time system strongly depends on the determination of the worst-case execution times (WCETs) of the

tasks. Based on the WCETs, a feasibility condition (FC) [1–3] can be established to ensure that the timeliness
constraints of all the tasks are always met, regardless of their release times, when they are scheduled with either
a fixed or dynamic priority-driven preemptive scheduling algorithm. The timeliness constraints are expressed in
terms of late termination deadlines imposed on the completion times of the tasks. The task model is the classical
sporadic model. A sporadic task set τ = {τ1, . . . , τn} is composed of n sporadic tasks, where a sporadic task τi is
defined by:

• xi : its WCET;
• Ti : its minimum inter-arrival time (also called, by extension, the period);
• Di : its relative deadline (a task released at time t must be executed by its absolute deadline t + Di).
In the sequel, we assume the general case where deadlines and periods are independent.

A recent research area called sensitivity analysis aims at providing interesting information on the validity of FC
when changing task WCETs [4], task periods [4], or task deadlines [5]. This permits, for example, finding a feasible

Received 4 April 2009; accepted for publication 4 April 2009. Copyright © 2009 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 1542-9423/09 $10.00 in correspondence with the CCC.∗ Associate Professor, LISSI, University of Paris 12, 120 rue Paul Armangot, 94400 Vitry sur Seine, France, lgeorge@ieee.org
† Associate Professor, ECE, LACSC, 37 quai de Grenelle, Paris, France, hermant@ieee.org

604

GEORGE AND HERMANT

task set, if the current one is not feasible, by modifying the task parameters (WCETs, periods, or deadlines) or
determining the impact of an architecture change on the feasibility of a task set (WCET change). In this paper, we
are interested in the sensitivity of WCETs. We want to determine the C-space feasibility domain as defined in [6]
when tasks are scheduled with preemptive earliest deadline first (EDF). The C-space is a region of n dimensions
where each dimension denotes the WCET of a task such that for any vector X = {x1, . . . , xn} in the C-space, task
set τ is feasible.

In the case of fixed-priority (FP) scheduling, when deadlines are less than or equal to periods, Bini et al. [4] have
shown how to compute the maximum expansion factor α applied to all the WCETs of the tasks to remain in the
C-space at a reasonable cost (see Sec. III), such that ∀i ∈ {1, . . . , n}, τi ∈ τ , the WCET of τi is α xi . They finally
propose a parametric equation of the C-space, detailed in Sec. III. In the general case, when deadlines and periods are
independent, α can be computed by successive iterations, where each iteration requires a pseudo-polynomial time
complexity.

Characterizing the space of feasible WCETs can help proposing new services for the temporal robustness of real-
time systems. This corresponds to the current trends in real-time systems for which a temporal protection service
is proposed to handle WCET overruns. If a WCET overrun occurs, an interrupt is raised and a service is called to
handle the problem. The C-space could be used to determine on-line if the WCET overrun can be tolerated or if a
correction should be undertaken (stop task or put it in background for example). Among such systems, we can cite
the AUTOSAR specification used for automotive applications [7], the real-time specification for Java (RTSJ) [8,9]
which specify such services (even if no solution is currently provided in real systems).

The rest of the paper is organized as follows. Section II reviews classical concepts for uniprocessor scheduling.
Section III presents the state-of-the-art in real-time scheduling with a focus on FP scheduling sensitivity analysis
and EDF scheduling. In Sec. IV, we present new results on EDF scheduling that are used for a sensitivity analysis of
the WCETs. We show how to derive from an analysis of EDF in time interval [min(D1, . . . , Dn), lcm(T1, . . . , Tn))

the C-space region parametric equations (lcm: least common multiple) and show that it is convex. We then show
how to reduce the number of times characterizing the C-space by two approaches, the first one is based on a
linear programming approach used to remove the non-significant constraints defining the C-space. We use the
simplex algorithm to determine if a constraint can be removed. The second approach is based on the computa-
tion of the maximum busy period obtained for any WCET in the C-space. In Sec. V, we show in an example
how to determine the C-space domain and how to reduce its complexity. We compare the C-space obtained for
EDF to the one obtained for FP scheduling using the deadline monotonic (DM) algorithm. Finally, we give some
conclusion.

II. Concepts and Notations
We recall classical results in the uniprocessor context for real-time scheduling.
• A task set is said to have constrained deadlines if ∀i ∈ {1, . . . , n}, Di � Ti .
• A task set is said to have arbitrary deadlines if no constraint is imposed between the deadlines and the periods

of the tasks.
The C-space characterization given in this paper for EDF is valid for arbitrary deadlines. Nevertheless, the reduction
of the number of times characterizing the C-space is more efficient for tasks with constrained deadlines.

• A task is said to be non-concrete if its request time is not known in advance. In this paper, we only consider
non-concrete request times, since the activation request times are supposed to be unpredictable.

• Given a non-concrete task set, the synchronous scenario corresponds to the scenario where all the tasks are
released at the same time, at time 0.

• EDF is the preemptive version of earliest deadline first non-idling scheduling. EDF schedules tasks according
to their absolute deadlines: the task with the shortest absolute deadline has the highest priority. Ties are broken
arbitrarily.

• FP is a preemptive fixed-priority scheduling according to an arbitrary priority assignment. We assume that
tasks are indexed by decreasing priorities.

• For FP, hp(i) denotes the subset of all the tasks, except τi , with a priority higher than or equal to that of τi .
• DM is a preemptive FP scheduling where the highest priority is given to the task with the shortest relative

deadline. Ties are broken arbitrarily.

605

GEORGE AND HERMANT

• A task set is said to be valid with a given scheduling policy if and only if no task occurrence ever misses its
absolute deadline with this scheduling policy.

• U = ∑n
i=1 xi/Ti is the processor utilization factor, i.e., the fraction of processor time spent in the execution

of the task set [10]. If U > 1, then no scheduling algorithm can meet the task deadlines.
• Wi(t) = xi +∑

τj ∈hp(i)�t/Tj�xj . Wi(t) is the cumulative workload of all the tasks in the synchronous scenario,
including the first request of τi at time 0 and all the tasks in hp(i) whose release times are in time interval
[0, t).

• W(t) = ∑n
j=1�t/Tj�xj . W(t) is the cumulative workload of all the tasks in the synchronous scenario whose

release times are in time interval [0, t). The length of the first busy period is solution of t = W(t).
• The processor demand bound function (DBF) h(t) is the amount of processing time requested by all tasks,

whose release times and absolute deadlines are in time interval [0, t] in the synchronous scenario [1], where
�x� returns the integer part of x. We have for a given task set

τ : h(t) =
n∑

j=1

hj (t)xj , where hj (t) = Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}

• Dmin is the minimum deadline (Dmin = Min{D1, . . . , Dn}).
• P is the least common multiple of the task periods (P = lcm{T1, . . . , Tn}).

III. State-of-the-Art
For FP scheduling, necessary and sufficient FCs have been proposed, based on the computation of the task worst-

case response times [2,7]. The worst-case response time is obtained in the worst-case synchronous scenario and is
computed by successive iterations. A task set is then declared feasible if the worst-case response time of any task in
the synchronous scenario is less than or equal to its deadline.

In the case of tasks set with constrained deadlines, the worst-case response time ri of a task τi is obtained in the
synchronous scenario for the first release of τi at time 0 and is solution of equation [11] ri = Wi(ri). ri is computed
by successive iterations and the number of iterations is bounded by 1 +∑

τj ∈hp(i)�Di/Tj�. This FC has the drawback
of being recursive. This FC has been revisited by [12] that proposes a non recursive FC for tasks scheduled with DM
in the case of constrained deadlines. This FC is described in the following theorem.

Theorem III.1 [12]: Let τ = {τ1, . . . , τn} be a sporadic task set with constrained deadlines scheduled with DM. A
task τi is feasible if and only if:

Xi = min
t∈Si

{
Wi(t)

t

}
� 1, where Si = {Di} ∪

{
kTj : j ∈ hp(i), k = 1, . . . ,

⌊
Di

Tj

⌋}

Task set τ is schedulable with DM if and only if: maxi=1,...,n{Xi} � 1.

For any task τi , the times to check correspond to time Di union the arrival times of the tasks of higher priority
than τi in time interval [0, Di].

The feasibility condition given in Theorem 1 has been significantly improved by Manabe and Aoyagi [13] that
shows how to reduce the times to consider as follows. For a task τi , the times to consider are Di and a set of times
corresponding to the request times of the tasks for tasks in hp(i) indexed by increasing deadlines, τ1 to τi−1. For
task τi−1, at ti−1 = k Ti , k ∈ N, such that ti−1 � Di � ti−1 + Di−1. For task τi−2, at two times ti−2 corresponding to
times Di and ti−1, ti−2 � Di � ti−2 + Di−2, and ti−2 � ti−1 � ti−2 + Di−2, and so on till task τ1, leading to at most
2i−1 times instead of 1 +∑

τj ∈hp(i)�Di/Tj� times.
This improvement has been also proposed by [6] with a recursive equation characterizing the times to consider,

for the C-space computation. This result can be used to determine the C-space (n dimensions) feasibility region for
the WCETs of a sporadic task set such that any vector X = {x1, . . . , xn} of WCETs in the C-space region leads to a
feasible task set. The C-space region is then defined as follows.

606

GEORGE AND HERMANT

Theorem III.2 [6]: Let τ = {τ1, . . . , τn} be a set of periodic tasks with constrained deadlines, indexed by decreasing
priorities. The C-space region is defined as the region such that ∀X = {x1, . . . , xn} ∈ R

+n:

∀i ∈ {1, . . . , n}, ∃t ∈ Pi−1(Di), t = xi +
i−1∑
j=1

⌈
t

Tj

⌉
xj

where Pi (t) is defined by recursive equation:

⎧⎪⎨
⎪⎩

P0(t) = t

Pi (t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1(t)

When deadlines and periods are independent, Tindell et al. [2] showed that the worst-case response time of a
sporadic task τi is not necessarily obtained for the first activation request of τi at time 0. The number of activations to
consider is 1 + �Li/Ti�, where Li is the length of the worst-case level-τi busy period defined by Lehoczky [14] as
the longest period of processor activity running tasks of priority higher than or equal to that of τi in the synchronous
scenario. It can be shown, when task are indexed by decreasing priorities, that Li = ∑i

j=1�Li/Tj�xj . From its

definition, Li is bounded by
∑i

j=1(xj /Tj) × lcm(T1, . . . , Ti) [3].
In that case, the complexity depends on Li , leading to a pseudo-polynomial time complexity. In such a context, the

characterization of the C-space might be very costly. α is computed by iterations, but the computation becomes more
and more costly. Indeed, when α increases, the length of the level-τi busy period tends toward lcm(T1, . . . , Ti) as the
load utilization tends toward 1. As a conclusion for FP scheduling, sensitivity analysis can be proposed in the case
of constrained deadlines but not for arbitrary deadlines, because increasing the task WCETs requires recomputing
the lengths of the level-τi busy periods, ∀i ∈ [1, n], which tends toward lcm(T1, . . . , Ti) of potentially exponential
length.

For EDF scheduling, Baruah et al. [1] showed that a necessary and sufficient feasibility condition is ∀t ∈
[0, L), h(t) � t , where L is the length of the first busy period in the synchronous scenario. When U � 1, L can
be computed by successive iterations and is a solution of L = W(L). With this feasibility test, we have the same
drawback as with FP in the general case of independent periods and deadlines, as the value of L increases and tends
toward P when we compute α by increasing iterations.

We note that, in both approaches, the dimensioning strongly depends on the values of the WCETs. We now
introduce new results for EDF to determine the C-space feasibility domain.

IV. Sensitivity Analysis for EDF
This section is divided into three subsections. In Sec. IV.A, we revisit the classical feasibility condition for EDF

based on the processor DBF and establish new results for the feasibility of a sporadic task set scheduled with EDF.
In Sec. IV.B, we show how to determine the C-space feasibility domain. The C-space region is expressed with
parametric equations. We also show that the C-space is convex. In Sec. IV.C, we show how to reduce the number of
constraints characterizing the C-space by two approaches, one based on a linear programming approach, the second
one based on the computation of the worst-case busy period valid for any WCETs in the C-space.

A. Revisiting the Feasibility Condition for EDF
The following lemma is an adaptation of [1].

Lemma 1: Let τ be a sporadic task set.

τ feasible with preemptive EDF ⇐⇒ Sup
t∈R+∗

{
h(t)

t

}
� 1

607

GEORGE AND HERMANT

Proof: The necessary and sufficient feasibility condition for EDF is as follows: task set τ is feasible with preemptive
EDF if and only if, ∀t ∈ R

+, h(t) � t , which is equivalent to: Supt∈R+∗{h(t)/t} � 1. The condition U � 1 is clearly
necessary as Supt∈R+∗{h(t)/t} � 1 ⇒ U � 1. Indeed, limt→∞(Supt∈R+∗{h(t)/t}) = U .

We now prove the following theorem, which allows us to compute Supt∈R+∗{h(t)/t}.

Theorem 1:

Sup
t∈R+∗

{
h(t)

t

}
= Max

{
U, Sup

t∈[Dmin,P)

{
h(t)

t

}}
.

Proof: First, we show that

Max

{
U, Sup

t∈[Dmin,P)

{
h(t)

t

}}
� Sup

t∈R+∗

{
h(t)

t

}

By definition, we have

lim
t→+∞

{
h(t)

t

}
� Sup

t∈R+∗

{
h(t)

t

}
, i.e., U � Sup

t∈R+∗

{
h(t)

t

}

Furthermore, we have

Sup
t∈[Dmin,P)

{
h(t)

t

}
� Sup

t∈R+∗

{
h(t)

t

}

It follows that

Max

{
U, Sup

t∈[Dmin,P)

{
h(t)

t

}}
� Sup

t∈R+∗

{
h(t)

t

}

Second, we show that

Sup
t∈R+∗

{
h(t)

t

}
� Max

{
U, Sup

t∈[Dmin,P)

{
h(t)

t

}}

Given that h(t) returns 0 for all t ∈ [0, Dmin), we have

∀t ∈ [0, P), h(t) � Sup
t∈[Dmin,P)

{
h(t)

t

}
t

Furthermore, we have

∀t1 ∈ R
+, ∀t2 ∈ R

+, t2 � t1, h(t2) − h(t1) � W(t2 − t1)

Consequently, we have

∀t ∈ [0, P), ∀k ∈ N,
h(t + kP)

t + kP
� h(t) + W(kP)

t + kP

Hence, we have

h(t + kP)

t + kP
�

Supt∈[Dmin,P)

{
h(t)

t

}
t

t + kP
+ U kP

t + kP
and

h(t + kP)

t + kP
� Max

{
U, Sup

t∈[Dmin,P)

{
h(t)

t

}}

608

GEORGE AND HERMANT

It follows that

Sup
t∈R+∗

{
h(t)

t

}
� Max

{
U, Sup

t∈[Dmin,P)

{
h(t)

t

}}

We therefore have the following theorem.

Theorem 2: A sporadic task set τ is feasible with preemptive EDF⇔Supt∈R+∗{h(t)/t} = Max{U, Supt∈M{h(t)//t}} �
1, where

M =
n⋃

j=1

{
Dj + kj Tj , 0 � kj �

⌈
P − Dj

Tj

⌉
− 1

}

Proof: The proof is straightforward from Lemma 1 and Theorem 3.
Set M = ⋃n

j=1{Dj + kj Tj , 0 � kj � �(P − Dj)/Tj� − 1} corresponds to the deadlines of the tasks in time
interval [Dmin, P) where function h(t) varies.

Note that this test is valid for any WCET configuration and will be used to characterize the C-space domain in
Sec. IV.B.

We now show in the following two examples that function h(t)/t is not necessarily maximum in the first busy
period of the synchronous scenario (i.e., in [0, L)). Consider a task set τ = {τ1, τ2, τ3}, composed of three tasks.

Example 1:
• τ1 : {x1 = 10; T1 = 50; D1 = 50};
• τ2 : {x2 = 20; T2 = 100; D2 = 60};
• τ3 : {x3 = 30; T3 = 200; D3 = 80}.
For this task set, we have Dmin = 50, P = 200, L = W(L) = 70 and U = 0.55. Figure 1 shows the variations of

function h(t)/t w.r.t. time t .
We observe that the maximum values of h(t)/t in time intervals [Dmin, L) and [Dmin, P) are, respectively, 0.5 and

0.75. This proves that the maximum value of h(t)/t is not necessarily obtained in [0, L) and that the computation
of h(t)/t must be done in [0, P). Furthermore, in this example, we see that h(t)/t tends toward U for values of t

higher than P . Hence, in this example, we have Supt∈R+∗{h(t)/t} = Supt∈[Dmin,P){h(t)/t}.
Example 2:

Fig. 1 Variations of h(t)/t w.r.t. time t.

609

GEORGE AND HERMANT

Fig. 2 Variation of h(t)/t w.r.t. time t.

• τ1 : {x1 = 10; T1 = 50; D1 = 50};
• τ2 : {x2 = 20; T2 = 100; D2 = 120};
• τ3 : {x3 = 30; T3 = 200; D3 = 250}.

For this task set, we have: Dmin = 50, P = 200, L = W(L) = 70 and U = 0.55. Figure 2 shows the variations
of function h(t)/t w.r.t. time t .

We observe that the maximum values of h(t)/t in time intervals [Dmin, L) and [Dmin, P) are, respectively, 0.5
and 0.5, which is less than U = 0.55. We see again that h(t)/t tends toward U for values of t higher than P . Hence,
in this example, we have Supt∈R+∗{h(t)/t} = U .

B. The C-space Feasibility Domain for EDF
Theorem 3: The C-space feasibility domain DEDF(τ) ⊂ R

+n of X = (x1, . . . , xn) is defined as the subset of X ∈ R
+n

such that:

Sup
t∈R+∗

⎧⎨
⎩1

t

n∑
j=1

hj (t)xj

⎫⎬
⎭ � 1

This defines all the task sets feasible with EDF. We have

DEDF(τ) =
⎧⎨
⎩X ∈ R

+n
, Max

⎛
⎝Sup

t∈M

⎧⎨
⎩1

t

n∑
j=1

hj (t)xj

⎫⎬
⎭ ,

n∑
j=1

xj

Tj

⎞
⎠ � 1

⎫⎬
⎭

where:

M =
n⋃

j=1

{
Dj + kj Tj , 0 � kj �

⌈
P − Dj

Tj

⌉
− 1

}

Proof: Straightforward from Theorem 3.

Set M denotes the set of points of discontinuity of processor DBF h(t) in time interval [Dmin, P), and m denotes
the cardinal of M. From Theorem 4, the C-space feasibility domain DEDF(τ) is defined by a set of m + 1 constraints.
The first m constraints are derived from the set of times in M, while the (m + 1)th constraint is derived from the
load utilization. We now show how to reduce the times we need to consider in M, i.e., how to extract, from
the first m constraints, the subset of times in M representing the most constrained inequalities, i.e., times where

610

GEORGE AND HERMANT

Supt∈R+∗{h(t)/t} is obtained. For any time ti , starting from time tm down to t1, we show how to determine if time ti
should be considered or can be removed from M. We formalize the problem as a linear programming problem LPi .
For any time ti , we try to maximize the objective function

∑n
j=1 hj (ti) xj taking into account the m − 1 constraints,

k �= i,
∑n

j=1 hj (tk) xj � tk . We then check if, for time ti ,
∑n

j=1 hj (ti) xj < ti . If this is the case, then adding the
constraint

∑n
j=1 hj (ti) xj � ti for time ti will bring the same result, i.e.,

∑n
j=1 hj (ti) xj < ti . Hence ti can then be

removed from M. Otherwise, time ti must be kept, indeed,
∑n

j=1 hj (ti) xj � ti . The constraint
∑n

j=1 hj (ti) xj � ti
must be taken into account. We use the simplex algorithm to solve, for any time ti , the maximization problem
LPi . The simplex algorithm must be applied on convex regions. We can therefore apply it step by step on the
times of M provided that the C-space region obtained for any time ti is convex (we show this property in this
section).

1. C-space Domain Convexity
In Corollary 1, we show that the C-space feasibility domain DEDF(τ) is the intersection of a finite number of

convex regions in R
+n (Lemmas 2 and 3). It is therefore a convex region in R

+n. In Corollary 2, we show that it is
also a convex polyhedra in R

+n.
Let Ei ⊂ R

+n be the closed region of X = (x1, . . . , xn) meeting the following property:

1

ti

n∑
j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
xj � 1

Hence, we have

Ei =
⎧⎨
⎩X ∈ R

+n
,

1

ti

n∑
j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
xj � 1

⎫⎬
⎭ , ti ∈ M

Lemma 2: Set Ei ∈ R
+n is convex. That is,

∀(X, X′) ∈ E2
i , ∀λ ∈ [0, 1], λ X + (1 − λ) X′ ∈ Ei

Proof: By definition, we have

X ∈ Ei ⇔
n∑

j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
xj � ti

X′ ∈ Ei ⇔
n∑

j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
x ′

j � ti

Furthermore, we have λ ∈ [0, 1]. It follows that

λ

n∑
j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
xj + (1 − λ)

n∑
j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
x ′

j � ti

Hence, we have
n∑

j=1

Max

{
0, 1 +

⌊
ti − Dj

Tj

⌋}
(λ xj + (1 − λ) x ′

j) � ti

611

GEORGE AND HERMANT

Finally, we have

λ X + (1 − λ) X′ ∈ Ei

The C-space region E ⊂ R
+n of X = (x1, . . . , xn) meeting the following property:

Lim
t→+∞

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1

is denoted as

E =
⎧⎨
⎩X ∈ R

+n
, Lim

t→+∞

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1

⎫⎬
⎭

Lemma 3: The C-space region E ∈ R
+n is convex. That is,

∀(X, X′) ∈ E2, ∀λ ∈ [0, 1], λ X + (1 − λ) X′ ∈ E

Proof: By definition, we have

Lim
t→+∞

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ =

n∑
j=1

xj

Tj

Furthermore, we have X ∈ E ⇔ ∑n
j=1 xj/Tj � 1 and X′ ∈ E ⇔ ∑n

j=1 x ′
j /Tj � 1.

By assumption, we have λ ∈ [0, 1]. It follows that λ
∑n

j=1 xj/Tj + (1 − λ)
∑n

j=1 x ′
j /Tj � 1.

Hence, we have
n∑

j=1

λ xj + (1 − λ) x ′
j

Tj

� 1

Finally, we have

λ X + (1 − λ) X′ ∈ E

The C-space region DEDF(τ) ⊂ R
+n of X = (x1, . . . , xn) meeting the following property:

Sup
t∈R+∗

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1

is denoted as

DEDF(τ) =
⎧⎨
⎩X ∈ R

+n
, Sup

t∈R+∗

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1

⎫⎬
⎭

612

GEORGE AND HERMANT

Corollary 1: The C-space region DEDF(τ) ∈ R
+n is convex. That is,

∀(X, X′) ∈ DEDF(τ) × DEDF(τ), ∀λ ∈ [0, 1], λ X + (1 − λ) X′ ∈ DEDF(τ).

Proof: From Theorem 5, we have

Sup
t∈R+∗

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ = Sup

t∈[Dmin, P [∪{+∞}

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭

= Max

⎧⎨
⎩Sup

t∈M

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ ,

n∑
j=1

xj

Tj

⎫⎬
⎭

By definition, we have

DEDF(τ) =
⎧⎨
⎩X ∈ R

+n
, Sup

t∈R+∗

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1

⎫⎬
⎭

It follows that

DEDF(τ) =
⎧⎨
⎩X ∈ R

+n
, Sup

t∈M

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1 ∧

n∑
j=1

xj

Tj

� 1

⎫⎬
⎭

Therefore, we have

DEDF(τ) =
(

m⋂
i=1

Ei

)⋂
E

The intersection of a finite number of convex regions in R
+n is a convex region in R

+n.

Corollary 2: The C-space feasibility domain DEDF(τ) is the intersection of a finite number of convex and closed
regions. It is therefore a convex polytope in R

+n.
Furthermore, the C-space feasibility domain DEDF(τ) is a closed convex polytope. It is therefore a convex polyhedra

in R
+n.

C. Reducing the Number of Constraints Characterizing the C-space
As shown in Sec. IV.B, the set of constraints in M enables us to characterize the EDF C-space where M is given

by M = ⋃n
j=1{Dj + kj Tj , 0 � kj � �(P − Dj)/Tj� − 1}.

The number of times in M can potentially be high. In order to reduce the number of times to consider for the
C-space, we propose two methods.

613

GEORGE AND HERMANT

• The first method consists in formalizing the problem of reducing M as a linear programming problem. As the
EDF C-space is convex, we can apply the simplex algorithm to reduce the number of non-pertinent times in M.

• The second method consists in reducing [Dmin, lcm(T1, . . . , Tn)) to [Dmin, λ
max), where λmax is the maximum

busy period valid for any WCET configuration in the C-space. We show that this reduction is possible if a
given property is met. We then propose an algorithm to compute λmax by iterations. This significant reduction
is confirmed by an example in Sec. V.

1. Linear Programming Problem LPi

We now express as a linear programming problem, the problem of determining if a time ti in M should be kept
or not. To solve this linear programming problem, we maximize step by step every function h(ti) = ∑n

j=1 hj (ti) xj ,
representing an objective function under the following linear constraints:

m⋃
k=1
k �=i

{h(tk) � tk}.

The linear programming problem can be expressed by means of a matrix of m lines and n rows where the value
at line p and row q is hp(tq) except for line p = i where it is equal to 0. We multiply this matrix with a times vector
X = {x1, . . . , xn} and check if the result is less than a time vector such that any line j �= i, equals to tj and line i

equals to 0 (the constraint for line i is always met). The linear programming problem LPi associated to time ti is as
follows:

(LPi)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
n∑

j=1
hj (ti) xj ,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(t1) h2(t1) · · · hn(t1)

...
...

...
...

h1(ti−1) h2(ti−1) · · · hn(ti−1)

0 0 0 0

h1(ti+1) h2(ti+1) · · · hn(ti+1)

...
...

...
...

h1(tm) h2(tm) · · · hn(tm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m,n

⎛
⎜⎜⎜⎝

x1

...

xn

⎞
⎟⎟⎟⎠

n

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

...

ti−1

0

ti+1

...

tm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m

x1 � 0, x2 � 0, . . . , xn � 0.

Linear Programming problem LPi associated to time ti .

2. The λmax Approach
Definition 1: λmax is the maximum busy period valid for any WCET configuration under the constraint that the
WCETs are in the C-space. Hence λmax is the solution of:

λmax = max
(x1,...,xn)∈C−space

W(λmax). (1)

We now show that if W(λmax) meets a given property detailed in Lemma 4 then it is possible to reduce the set of
times from M to the absolute deadlines of the tasks in the synchronous scenario in time interval [Dmin, λ

max).

614

GEORGE AND HERMANT

Lemma 4: Let τ = {τ1, . . . , τn} be a sporadic task set, composed of n sporadic tasks τj . Let M denote the set of
points of discontinuity of processor DBF h(t) in time interval [Dmin, P), and m denote the cardinal of M.

M =
n⋃

j=1

{
Dj + kj Tj , kj ∈

{
0, . . . ,

P

Tj

− 1

}}

If there exists a time tc ∈ [Dmin, P), a linear combination of the ti’s, i.e., tc = ∑m
i=1 pi ti , with pi ∈ N and ti ∈ M,

such that:

W(tc) =
n∑

j=1

⌈
tc

Tj

⌉
Cj =

m∑
i=1

pi h(ti)

Then, we have

Sup
t∈R+∗

{
h(t)

t

}
= Sup

t∈[Dmin,tc)

{
h(t)

t

}

Proof: Let us define θk , for all k ∈ N, as follows:

θk = Sup
t∈[ktc,(k+1)tc),t �=0

{
h(t)

t

}

We have

θ0 = Sup
t∈[Dmin,tc)

{
h(t)

t

}

And

∀k ∈ N
∗, θk = Sup

t∈[ktc,(k+1)tc)

{
h(t)

t

}

By definition, we have

∀t ∈ R
+, h(t + tc) − h(t) � W(tc)

And

W(tc) =
n∑

j=1

⌈
tc

Tj

⌉
Cj =

m∑
i=1

pih(ti)

That is,

∀t ∈ R
+, h(t + tc) � h(t) +

m∑
i=1

pih(ti)

∀t ∈ R
+,

h(t + tc)

t + tc
� h(t) +∑m

i=1 pih(ti)

t +∑m
i=1 piti

615

GEORGE AND HERMANT

By definition, we have

θk+1 = Sup
t∈[(k+1)tc,(k+2)tc)

{
h(t)

t

}
= Sup

t∈[ktc,(k+1)tc)

{
h(t + tc)

t + tc

}

θk+1 � Sup
t∈[ktc,(k+1)tc)

{
h(t + tc)

t + tc

}
� Sup

t∈[ktc,(k+1)tc)

{
h(t) +∑m

i=1 pih(ti)

t +∑m
i=1 piti

}

θk+1 � Sup
t∈[ktc,(k+1)tc)

{
h(t + tc)

t + tc

}
� Sup

t∈[ktc,(k+1)tc)

{
θkt +∑m

i=1 piθkti

t +∑m
i=1 piti

}

θk+1 � θk

In other words, we have

θk � θ0.

Therefore, we have

Sup
t∈R+∗

{
h(t)

t

}
= Max

k∈N

{θk} = θ0 = Sup
t∈[Dmin,tc)

{
h(t)

t

}

In all the experiments we have done, we have been able to find a value of W(λmax) meeting Lemma 4 for task sets
having constrained deadlines for which Supt∈R+∗{h(t)/t} = Supt∈[Dmin,P){h(t)/t}. We conjecture that such a time
always exists for task set having constrained deadlines but we have not yet been able to prove it. Section V shows an
example meeting Lemma 4.

We nevertheless show in Lemma 5 that it is always possible to find two absolute deadlines tk and tp in the
synchronous scenario such that W(λmax) � h(tk) + h(tp).

Lemma 5: Let τ be a sporadic task set, and λ be the length of the first synchronous busy period for τ , with an arbitrary
WCETs configuration. Then ∃tk or tp, absolute deadlines in the synchronous scenario such that W(λ) � h(tk) + h(tp).

Proof: Let tl be the last absolute deadline in [0, λ]. Let tf be the first request time of a task in [0, λ] having an
absolute deadline after λ. W(λ) = h(tl) + Q where h(tl) is equal by its definition to the workload of all the tasks
having their deadlines in [Dmin, tl] and Q is the workload of the tasks requested in [tf , λ] having their deadlines after
λ. We denote τ ∗ the later task subset of τ . Let tmax be the last deadline of the tasks in τ ∗, taken into account in Q.
Consider now a scenario starting at time tf where all the tasks in τ ∗ having their request time in the time interval
[tf , ∞) are left shifted, to be first released at time tf . The resulting workload in [tf , λ] cannot decrease. Let t ′max be
the new maximum deadline resulting from the transformation. We have t ′max � tmax. The workload obtained for tasks
in τ ∗ is then bounded by the workload of tasks in the synchronous scenario starting at time 0 having their deadlines
in [0, t ′max − tf] equal to h(t ′max − tf). By their definitions, tl and t ′max − tf are absolute deadlines in the synchronous
scenario. By setting tk = tl and tp = t ′max − tf , we therefore have W(λ) � h(tk) + h(tp).

We now propose in Algorithm 1 a function to compute λmax. This function considers step by step the ordered set
of times ti in M ∪ {P } composed of all the absolute deadlines of the tasks in the synchronous scenario union time
P = lcm(T1, . . . , Tn). We propose an iterative computation of λmax starting from the minimum absolute deadline
t1. For any time ti , we consider the function N(x1, . . . , xn) = max(U, h(t1)/t1, . . . , h(ti)/ti), restriction of the
Sup(h(t)/t) to all times from t1 to ti . To reduce the number of possible WCETs, we consider all possible values of
the WCETs of task τ1, . . . , τn denoted x1, . . . , xn where each xi is constrained by h(Di) � Di , a constraint that must
be met by xi belonging to the C-space. For any configuration of x1, . . . , xn, such that the max(U, supt∈[t1,...,ti](h(t)/t))

is less than or equal to 1, we compute the busy period λ solution of λ = W(λ), by successive iterations as long as
either:

• W(λ) = λ. In this case, the iterative equation computing λ has converged and λ � ti+1. The busy period λ

obtained must be considered for the computation of λmax.

616

GEORGE AND HERMANT

• λ > ti+1. In this case λ exceeds ti+1. The computation of λ can be stopped as ti+1 is a constraint that must be
considered in the computation of Sup(h(t)/t). We need to start again the computation of λ to consider times
from t1 to ti+1.

Algorithm 1 Computation of λmax.
Function Compute-lambda-max(τ , Si) : Real

τ : Task Set;
Si : Set of times inM ∪ P ; // Ordered set of times in M ∪ {P }
temp, λ, λmax : Real;
N(x1, . . . , xn) : Function;
// For all times ti in M ∪ P , starting from t1
For (Each ti ∈ Si , starting from t1) do

// Compute the max between U and the Sup of h(t)/t composed of the subset of times from t1 to ti
N(x1, . . . , xn) = max(U, h(t1)/t1, . . . , h(ti)/ti); λmax = 0;
// For all possible WCETs, with the constraint h(t) � t ,
for t ∈ {D1, D2, . . . , Dn}
For (All (x1, . . . , xn) with x1 � D1, x1 + x2 � D2, . . ., x1 + · · · + xn � Dn) do

λ = temp = ti ;
// If the approximation of sup(h(t)/t) is less than or equal to 1, we compute λ

If (N(x1, . . . , xn) � 1) then
temp = W(λ);
// As long as we have not converged and not exceeded the next time ti+1

While (temp �= λ AND λ � ti+1) do
λ = temp; temp = W(λ);

done
end If
// If we have exceeded ti+1, we stop and restart for the next time ti+1

If (λ > ti+1) then
λmax = −1; Exit-For-All;

end If
λmax = max(λmax, λ);

end For

// if we have converged before the next time in Si , λmax has been found
If (λmax � ti+1 AND λmax �= −1) then

Exit-For;
end If

end For
return λmax

End

V. Numerical Applications
In this section, we consider a sporadic task set τ = {τ1, τ2, τ3}, composed of three sporadic tasks τi , where, for

any task τi , Ti , and Di are fixed, and xi ∈ R
+, the WCET of task τi , is variable.

• τ1 : (x1, T1, D1) = (x1, 7, 5);
• τ2 : (x2, T2, D2) = (x2, 11, 7);
• τ3 : (x3, T3, D3) = (x3, 13, 10).
First, we show how to determine the C-space parametric equations for EDF, using the linear programming approach

detailed in Sec. IV.C.We show that the simplex algorithm enables us to remove a very significant number of constraints

617

GEORGE AND HERMANT

characterizing the C-space. Then, we compare the C-space obtained with EDF scheduling to the C-space obtained
with DM scheduling, following the approach given in Theorem 2. Finally, we study the λmax approach.

In this example, we have: Dmin = 5 and P = 1001. From Theorem 4, we have to consider the set M of times
(absolute deadlines) for the computation of h(t)/t in time interval [5, 1001), where M is given by:

M = {5 + 7 k1, k1 ∈ {0, . . . , 142}}
∪ {7 + 11 k2, k2 ∈ {0, . . . , 90}}
∪ {10 + 13 k3, k3 ∈ {0, . . . , 76}}

In this example, the cardinal m of M is equal to 281.
We recall that the C-space feasibility domain DEDF(τ) for EDF is defined by a set of m + 1 linear constraints:

DEDF(τ) =
⎧⎨
⎩X ∈ R

+n
, Sup

t∈M

⎧⎨
⎩1

t

n∑
j=1

Max

{
0, 1 +

⌊
t − Dj

Tj

⌋}
xj

⎫⎬
⎭ � 1 ∧

n∑
j=1

xj

Tj

� 1

⎫⎬
⎭

A. Applying the Linear Programming Approach
The simplex algorithm is applied on the Linear Programming problem LPi , for any time ti ∈ M, starting from

time tm down to time t1 (to optimize the computation). We obtain the following subset S1 of times in M maximizing
h(t)/t for any time vector X = {x1, . . . , xn} ∈ R

+n. We solve this problem with the classical simplex algorithm
implemented in the Maple 11 computer algebra system.

We obtain the following subset of M:

S1 = {5, 7, 10, 12, 19, 40, 62} ⊆ M.

Therefore, we have

Sup
t∈M

{
h(t)

t

}
= Sup

t∈S1

{
h(t)

t

}

= Max

{
x1

5
,
x1 + x2

7
,
x1 + x2 + x3

10
,

2 x1 + x2 + x3

12
,

3 x1 + 2 x2 + x3

19
,

6 x1 + 4 x2 + 3 x3

40
,

9 x1 + 6 x2 + 5 x3

62

}
.

Since

{
x1 + x2 � 7

2 x1 + x2 + x3 � 12
=⇒ 3 x1 + 2 x2 + x3 � 19

and ⎧⎪⎨
⎪⎩

x1 + x2 + x3 � 10

2 x1 + x2 + x3 � 12

6 x1 + 4 x2 + 3 x3 � 40

=⇒ 9 x1 + 6 x2 + 5 x3 � 62

We can still reduce the set of times to check to

S2 = {5, 7, 10, 12, 40} ⊆ S1.

618

GEORGE AND HERMANT

Hence,

Sup
t∈M

{
h(t)

t

}
= Sup

t∈S2

{
h(t)

t

}

= Max

{
x1

5
,
x1 + x2

7
,
x1 + x2 + x3

10
,

2 x1 + x2 + x3

12
,

6 x1 + 4 x2 + 3 x3

40

}
.

We have

Sup
t∈R+∗

{
h(t)

t

}
= Max

{
U, Sup

t∈M

{
h(t)

t

}}

= Max

{
x1

7
+ x2

11
+ x3

13
,
x1

5
,
x1 + x2

7
,
x1 + x2 + x3

10
,

2 x1 + x2 + x3

12
,

6 x1 + 4 x2 + 3 x3

40

}

Since ⎧⎪⎨
⎪⎩

11 (x1 + x2 + x3) � 110

24 (2 x1 + x2 + x3) � 288

14 (6 x1 + 4 x2 + 3 x3) � 560

=⇒ 143 x1 + 91 x2 + 77 x3 � 958

=⇒ 143 x1 + 91 x2 + 77 x3 � 1001

=⇒ x1

7
+ x2

11
+ x3

13
� 1

=⇒ U � 1

We have

Sup
t∈R+∗

{
h(t)

t

}
= Max

{
U, Sup

t∈M

{
h(t)

t

}}

= Max

{
x1

5
,
x1 + x2

7
,
x1 + x2 + x3

10
,

2 x1 + x2 + x3

12
,

6 x1 + 4 x2 + 3 x3

40

}
.

Hence

DEDF(τ) =
{
X ∈ R

3, Sup
t∈R+∗

{
h(t ; τ)

t

}
� 1

}
,

That is, the C-space obtained with EDF scheduling is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

5
� 1

x1 + x2

7
� 1

x1 + x2 + x3

10
� 1

2x1 + x2 + x3

12
� 1

6x1 + 4x2 + 3x3

40
� 1

In our example, the C-space is obtained for x1, x2 and x3 satisfying:

619

GEORGE AND HERMANT

Fig. 3 The C-space feasibility domain DEDF(τ).

• 0 � |x1| � 5;
• 0 � |x2| � 7 − |x1|;
• 0 � |x3| � Min

{
10 − |x1| − |x2|, 12 − 2 |x1| − |x2|, 40

3 − 2 |x1| − 4
3 |x2|)

}
.

In Fig. 3, we show a graphical representation of the C-space obtained with EDF scheduling.
Now, if we compare the C-space obtained with EDF scheduling to the C-space obtained with DM scheduling,

using Theorem 2, we get the set of times Pi−1(Di) to consider for each task τi given in Table 1.
We recall that the C-space feasibility domain DDM(τ) for DM is defined by a set of linear constraints:

DDM(τ) =
⎧⎨
⎩X ∈ R

+n
, Max

j∈{1,...,n}

{
rj

Dj

}
� 1 ∧

n∑
j=1

xj

Tj

� 1

⎫⎬
⎭

In our example, we have the following conditions:
• ((r1 = x1) ∧ (r1 � 5));
• ((r2 = x1 + x2) ∧ (r2 � 7));
• ((r3 = x1 + x2 + x3) ∧ (r3 � 7)) ∨ ((r3 = 2x1 + x2 + x3) ∧ (r3 � 10)).
In other words, we have

Max

{
x1

5
,
x1 + x2

7
, Min

{
x1 + x2 + x3

7
,

2x1 + x2 + x3

10

}}
� 1.

Let us show that:

Max

{
x1

5
,
x1 + x2

7
, Min

{
x1 + x2 + x3

7
,

2x1 + x2 + x3

10

}}
� 1 =⇒ x1

7
+ x2

11
+ x3

13
� 1.

Table 1 Task set τ and times to consider for
the C-space with DM scheduling

Ti Di Pi−1(Di)

τ1 7 5 {5}
τ2 11 7 {7}
τ3 13 10 {7, 10}

620

GEORGE AND HERMANT

We need to distinguish two cases.
Case 1:
• x1 � 5;
• x1 + x2 � 7;
• x1 + x2 + x3 � 7.

Case 2:
• x1 � 5;
• x1 + x2 � 7;
• 2x1 + x2 + x3 � 10.
Case 1: Let us show that U � 1.
Since: ⎧⎪⎨

⎪⎩
52 x1 � 260

14 (x1 + x2) � 98

77 (x1 + x2 + x3) � 539

=⇒ 143 x1 + 91 x2 + 77 x3 � 897

=⇒ 143 x1 + 91 x2 + 77 x3 � 1001

=⇒ x1

7
+ x2

11
+ x3

13
� 1

=⇒ U � 1

Case 2: Let us show that U � 1.
Since {

14 (x1 + x2) � 98

77 (2 x1 + x2 + x3) � 770

=⇒ 168 x1 + 91 x2 + 77 x3 � 868

=⇒ 143 x1 + 91 x2 + 77 x3 � 1001

=⇒ x1

7
+ x2

11
+ x3

13
� 1

=⇒ U � 1

In both cases, U � 1.
Therefore, we have

DDM(τ) =
{
X ∈ R

+n
, Max

{
x1

5
,
x1 + x2

7
, Min

{
x1 + x2 + x3

7
,

2x1 + x2 + x3

10

}}
� 1

}
.

The C-space feasibility domain DDM(τ) obtained with DM scheduling is given below. All inequalities are in
conjunction except the third and the fourth ones which are in disjunction (at least one of the two must be met).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 � 5

x1 + x2 � 7

x1 + x2 + x3 � 7

2x1 + x2 + x3 � 10

}

x1/7 + x2/11 + x3/13 � 1

621

GEORGE AND HERMANT

Fig. 4 The C-space feasibility domain DDM(τ).

In our example, the C-space is obtained for x1, x2 and x3 satisfying:
• 0 � |x1| � 5;
• 0 � |x2| � 7 − |x1|;
• 0 � |x3| � Max{7 − |x1| − |x2|, 10 − 2 |x1| − |x2|)}.
In Fig. 4, we show a graphical representation of the C-space obtained with DM scheduling.
The volume of the C-space of EDF is computed as follows:

∫ 5

0

∫ 7−x1

0

∫ min(10−x1−x2, 12−2x1−x2, 40/3−2x1−4x2/3)

0
dx3 dx2 dx1 = 439

4

The volume of the C-space of DM is computed as follows:

∫ 5

0

∫ 7−x1

0

∫ max(7−x1−x2, 10−2x1−x2)

0
dx3 dx2 dx1 = 497

6

Hence, we obtain a volume ratio between the C-space of EDF and the C-space of DM equal to 1317/994 ≈ 1.325.

B. Applying the λmax Approach
Applying Algorithm 1 on task set τ , we find: λmax = 52.
We now show that Lemma 4 is valid at time 52 for our example. Let us prove that:

Sup
t∈R+∗

{
h(t)

t

}
= Sup

t∈[5,52)

{
h(t)

t

}
.

There exists a critical time tc = 52 = 12 + 40, such that:

W(52) =
⌈

52

T1

⌉
x1 +

⌈
52

T2

⌉
x2 +

⌈
52

T3

⌉
x3 =

⌈
52

7

⌉
x1 +

⌈
52

11

⌉
x2 +

⌈
52

13

⌉
x3.

And

W(52) = 8x1 + 5x2 + 4x3 = h(12) + h(40).

From Lemma 4, it follows that the constraints characterizing the C-space of EDF are restrained to the absolute
deadlines of the tasks in the synchronous scenario, i.e., in [Dmin, λ

max) ∩ M:

Sup
t∈R+∗

{
h(t)

t

}
= Sup

t∈[5,52)∩M

{
h(t)

t

}
.

622

GEORGE AND HERMANT

If Lemma 4 is satisfied, then the best solution to reduce the times in M is probably to compute first λmax and then
to apply the simplex algorithm using the linear programming approach. We end this section with a conjecture that
there always exists a λmax satisfying Lemma 4 for task set with constrained deadlines.

VI. Conclusion
In this paper, we have presented new results for a sensitivity analysis of preemptive EDF. We have considered

sporadic tasks with independent periods and deadlines. Our goal was to characterize the space of feasible WCETs
for EDF, also called the C-space, with parametric equations. We have shown that the C-space can be obtained from
an analysis of EDF in a time interval of a duration bounded by the least common multiple of the task periods. From
this analysis, we have proposed two approaches to reduce the number of times to consider. One based on a linear
programming problem solved with the simplex algorithm. The other based on the computation of the worst-case busy
period valid for any WCET in the C-space. The second approach is valid for busy periods meeting a given property.
Both approaches can be used together. We have compared the two approaches in an example. We conjecture that the
second approach can always be used (i.e., that the given property is always valid) and leave this as an open problem.

References
[1] Baruah, S., Howell, R., and Rosier, L., “Algorithms and Complexity Concerning the Preemptive Scheduling of Periodic

Real-Time Tasks on One Processor,” Real-Time Systems, Vol. 2, 1990, pp. 301–324.
doi: 10.1007/BF01995675

[2] Tindell, K., Burns, A., and Wellings, A. J., “Analysis of Hard Real-Time Communications,” Real-Time Systems, Vol. 9,
1995, pp. 147–171.
doi: 10.1007/BF01088855

[3] George, L., Rivierre, N., and Spuri, M., “Preemptive and Non-preemptive Real-Time Uniprocessor scheduling,” INRIA
Research Report No. 2966, Sept. 1996.

[4] Bini, E., Di Natale, M., and Buttazzo, G., “Sensitivity Analysis for Fixed-Priority Real-Time Systems,” Proceedings of the
18th Euromicro Conference on Real-Time Systems (ECRTS’06), Dresden, Germany, 5–7 July 2006.

[5] Balbastre, P., Ripoll, I., and Crespo, A., “Optimal Deadline Assignment for Periodic Real-Time Tasks in Dynamic Priority
Systems,” Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS ’06), Dresden, Germany, 5–7 July
2006.

[6] Bini, E., and Buttazzo, G., “Schedulability Analysis of Periodic Fixed Priority Systems,” IEEE Transactions on Computers,
Vol. 53, No. 11, Nov. 2004, 12 pages.
doi: 10.1109/TC.2004.103

[7] Hladik, P., Déplanche, A., Faucou, S., and Trinquet, Y., “Adequacy between AUTOSAR OS Specification and Real-Time
Scheduling Theory,” IEEE Second International Symposium on Industrial Embedded Systems (SIES’07), Lisbon, Portugal,
4–6 July 2007.

[8] Bollella, G., Brosgol, B., Gosling, J., Dibble, P., Furr, S., and Turnbull, M., The Real-Time Specification for Java, 1st ed.,
Addison Wesley Longman, 2000.

[9] Bougueroua, L., George, L., and Midonnet, S., “Dealing with Execution-Overruns to Improve the Temporal Robustness of
Real-Time Systems Scheduled FP and EDF,” The Second International Conference on Systems (ICONS’07), 22–28 Apr.
2007.

[10] Liu, L. C., and Layland, W., “Scheduling Algorithms for Multi-Programming in a Hard Real-Time Environment,” Journal
of the ACM, Vol. 20, No. 1, Jan. 1973, pp. 46–61.
doi: 10.1145/321738.321743

[11] Joseph, M., and Pandya, P., “Finding Response Times in a Real-Time System,” The Computer Journal, Vol. 29, No. 5, 1986,
pp. 390–395.
doi: 10.1093/comjnl/29.5.390

[12] Lehoczky, J. P., Sha, L., Strosnider, J. K., and Tokuda, H., “Fixed Priority Scheduling Theory for Hard Real-Time Systems,”
Foundations of Real-Time Computing, Scheduling and Resource Management, edited by A. M. Tilborg and G. M. Koob,
Chap. 1, Kluwer Academic Publishers, 1991.

[13] Manabe, Y., and Aoyagi, S., “A Feasibility Decision Algorithm for Rate Monotonic and Deadline Monotonic Scheduling,”
Real-Time Systems, Vol. 14, No. 2, 1998, pp. 171–181.
doi: 10.1023/A:1007964900035

[14] Lehoczky, J., “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines,” Proceedings of the 11th IEEE
Real-Time Systems Symposium, Lake Buena Vista, FL, USA, Dec. 1990, pp. 201–209.

623

http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1007/BF01088855
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1023/A:1007964900035

